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INTRODUCTION 

Biochemists have long bet-a interested in the myofibrillar proteins 

because this group of proteins contains the contractile elements of 

muscle. Moreover, considerable use has been made of myofibrillar protein 

solubility as a tool for characterization of muscle tissue growth and 

differentiation in several species. Protein solubility has also been 

useful for comparing properties of different muscles. Hence, methodology 

for extraction of protein from muscle immediately after death has at

tracted considerable attention and detailed procedures have been pub

lished for isolation and purification of actin, myosin, tropomyosin and 

the other more recently discovered myofibrillar proteins. 

Interest and emphasis on studies of post-mortem muscle protein 

solubility have also increased because of the effect of rapid post-mortem 

glycolysis on muscle protein solubility, and the possibility that post

mortem tenderization is caused by a dissociation of actomyosin to actin 

and myosin. It is well-known that during post-mortem storage, excised 

muscles first become rigid and tough and then eventually become soft and 

tender. Accompanying these physical changes are biochemical changes 

which at present are still not completely characterized. It would be 

very beneficial if the physical methods of measuring rigor could be cor

related to certain biochemical changes, particularly in the myofibrillar 

protein fraction. Protein solubility may be a very useful method for de

tecting biochemical changes in post-mortem muscle which can then be re

lated to the known post-mortem changes. Although post-mortem changes in 

myofibrillar protein solubility would most likely be directly relatable 
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to post-mortem alterations in physical properties of muscle, post-mortem 

changes in sarcoplasmic protein solubility also remain important to the 

meat scientist because changes in this fraction may reflect autolytic 

breakdown of protein in the less soluble myofibrillar and stroma fractions. 

Several studies of post-mortem changes in muscle protein solubility 

and their possible relation to meat quality have recently appeared in the 

literature. No clear relationship between protein solubility and tender

ness has emerged from these studies. However, many of these early in

vestigations have suffered from failure to characterize the extracted 

protein» Rather, it has usually been assumed that high ionic strength 

salt solutions extract "actomyosin" and that changes in the amount of pro

tein extracted by high ionic salt solutions reflect changes in the solu

bility of "actomyosin". However, it is well-known that myosin alone may 

be specifically extracted by high ionic strength salt solutions and dif

ferences in the amount of protein solubilized by such solutions may re

flect the. differences in either actin or myosin solubility. Indeed, there 

have been several recent studies of actomyosin extraction from at-death 

rabbit muscle which indicate, in contrast to the current prevailing 

opinion, that many high ionic strength salt solutions will extract only 

myosin from minced muscle, even when extraction is prolonged for 24 

hours or longer. Interpretation of those studies attempting to relate 

tenderness to post-mortem muscle protein solubility would be altered 

substantially if the extracts in such studies contained only myosin. 

Furthermore, the use of muscle protein solubility to help characterize 

the biochemical changes in muscle undergoing atrophy or hypertrophy, or 
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passing through other rapid physiological changes requires a thorough 

understanding of the process of myofibrillar protein extraction. For 

example, the identity of the rate-limiting factor in actomyosin extraction 

is not clear. Neither is it known if the ̂  situ interaction between 

the thick and thin filaments actually lowers actomyosin extractability, 

although it is apparently assumed that it does. Therefore, the purpose 

of this investigation was to study the extraction of myofibrillar protein 

by different extracting solutions with particular emphasis on the relative 

rates of actin and myosin solubilization from whole minced muscle or 

myof ibrils. 

Limitations of the Study 

Because of the infinite number of different extracting solutions 

and conditions, it was not possible to include all possible combinations 

of different pH values, ionic strengths and extracting salts in this 

study. Emphasis was placed on extraction pH values near neutrality, the 

ionic strength of all solutions was fixed at 0.65, and the extracting 

salts were selected to emphasize the possible, hitherto unsuspected role 

of CcL** in actin solubilization. Neither was it possible to conduct a 

completely thorough study of the properties of extracted protein solu

tions, but rather tests were chosen that would be most sensitive to the 

relative amounts of actin and myosin in the extracts. Therefore this 

study does not attempt to assess the rate of solubilization of tropomyo

sin, troponin and the other minor myofibrillar proteins. The study was 

limited to rabbit muscle and it is recognized that different results may 

be obtained with other species. 
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Nomenclature and Abbreviations 

The following abbreviations will be used throughout this thesis : 

ATP, adenosinetriphosphate; EDTA, ethylenediaminetetraacetic acid; EGTA, 

1,2-bis-(2-dicarboxymethylaminoethoxy)-ethane; Tris, Tris-(hydroxyethyl) 

aminomethane; ^/2, an ionic strength calculated on a molarity basis; 

acceleration due to gravity = 980 cm/sec; hr, hour; u, micro or micron; 

min, minute; mM, millimolar; ml, milliliter; mg, milligram;r\_rel, relative 

viscosity; cc, cubic centimeter; nm, nanometer; v/w, volume/weight. 
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REVIEW OF LITERATURE 

Because of its long usage, there has been considerable confusion 

about the meaning of the term "myosin". The word, myosin, was first 

used by Kuhne (1859), to refer to the substance which formed a clot 

when the juice pressed out of frog muscle was allowed to stand at room 

temperature. It was realized soon afterward that Kuhne's "myosin" was 

a complex mixture, and the term, myosin, was reserved for that fraction 

of protein which appeared in strong salt ( 0^2> 0.5) extractions of muscle 

as opposed to those more soluble proteins appearing in the press juice. 

Thus "myosin" solutions were prepared by extraction of minced muscle with 

strong salt solutions followed by precipitation of myosin by dilution 

(Danilewsky, 1881; Halliburton, 1887; Von Furth, 1895). Later "myosin" 

was used by Edsall (1930) to indicate the protein fraction of muscle which 

is extracted by 0.6 M KCl at pH 8.5 - 9.0, and precipitated when the 

solution is diluted to 0.1 M KCl at pH 7.0. However, in 1941 Banga and 

Szent Gyorgyi (1941) found that the earlier myosin preparations consisted 

of more than one protein. If minced muscle was extracted with a high 

ionic strength salt solution ( f^/2>0.3) for less than 1 hour, the ex

tracted protein exhibited a relatively low viscosity, and the viscosity 

of the solution was not influenced by the addition of ATP. If, on the 

other hand, the muscle mince was extracted with the same salt solution 

for 20-24 hours or overnight, the extract had a high viscosity, and the 

viscosity was substantially lowered by addition of ATP. Banga and Szent 

Gyorgyi (1941) deduced that during prolonged extraction, a second protein 
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was extracted which then formed a complex with myosin. The ten?., "myosin 

B", was coined to refer to the complex solubilized by the 20 - 2it hour 

high ionic strength extraction of minced muscle. Other investigators 

have called this same complex, "natural actomyosin". On the other hand, 

myosin A was the term used by Banga and Szent Gyorgyi to refer to the 

single protein solubilized by short (<1 hour) extraction of minced 

muscle. In present nomenclature the term, myosin, is reserved for the 

single protein solubilized by the 1-2 hour extraction of minced muscle. 

Therefore myosin A is nearly equivalent to myosin, and furthermore, most 

of the so-called "myosin" preparations described before 1945 are in fact, 

not myosin at all but consist principally of myosin B or natural acto

myosin. 

About the same time that Banga and Szent Gyorgyi reported their find

ings, Schramm and Weber (1942) described some u1tracentrifuga1 studies 

of "myosin" solutions prepared by overnight extraction with high ionic 

strength solutions, which demonstrated that such solutions contained both 

a slowly sedimenting component, S20 = 6, and a faster sedimenting com

ponent, 820 = 20 - 36. These two components could be separated by dif

ferential centrifugation, thereby providing further strong evidence that 

the protein then known as "myosin" was actually a complex of two proteins. 

Schramm and Weber (1942) referred to the more slowly sedimenting com

ponent as "L-myosin" (L = leicht) and to the faster component as "S-myosin" 

(S = Schnell). Thus L-myosin is nearly equivalent to myosin A or myosin 

itself and S-myosin is analogous to myosin B or natural actomyosin. 



www.manaraa.com

7 

In 1942-43 Straub first isolated and characterized actin, a second 

major protein of the myofibril (Straub, 1942; 1943). It was immediately 

realized that actin was the second protein, completed with myosin in the 

20-24 hour salt extracts of minced muscle, and it was shown that ATP 

possessed the ability to dissociate the actin-myosin complex (Mommaerts, 

1942). This then explained the ability of ATP to markedly lower the 

viscosity of myosin B solutions. There has been much subsequent work 

corroborating this finding (Banga and Szent Gyorgyi, 1941; Dainty et al., 

1944; Mommaerts, 1948; 1950; Tonomura and Yoshimura, 1960; Maruyama and 

Gergely, 1962). Moreover it has been shown that pyrophosphate acts in 

a manner similar to ATP (Gergely and Kohler, 1958; Acs e^ a^., 1949; 

Tonomura and Morita, 1959; Granicher and Portzehl, 1964). 

Banga and Szent Gyorgyi (1941) attributed the phenomenon of actomyo-

sin extraction to the fact that once the endogenous ATP present in muscle 

at death had fallen to a level too low to effectively dissociate the actin-

myosin interaction, the affinity between myosin in solution and actin in 

the residue breaks the bonds holding actin to the residue, pulling actin 

into solution where it complexes with myosin to form actomyosin. 

The early work by Szent Gyorgyi's group at Szeged has remained un

challenged for many years and many of the preparative techniques devised 

by this group have continued in use virtually unchanged to the present 

time. The problem of myosin and actomyosin extraction from muscle was not 

re-examined until 1953, when Hanson and Huxley (1953) investigated dif

ferent extraction techniques in an effort to localize actin and myosin 
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in the interdigitating thick and thin filament model of muscle structure 

that they had just discovered. These workers found that it was possible 

to extract almost pure myosin even from myofibrils or glycerinated muscle 

fibers, both of which do not contain any ATP, by use of either a 0.1 M 

sodium pyrophosphate, 0.001 M MgCl2 solution at pH 7.0, or a 0.47 M KCl, 

0.01 M pyrophosphate, 0.1 M phosphate, 0.001 M MgGl2 solution (Hasselbach-

Schneider solution) at pH 6.U. Prolonged extraction by either of these 

solutions caused almost complete disappearance of the A-band from myo

fibrils or glycerinated fibers without apparently affecting the I-band 

or the Z-disk. Furthermore it was possible to extract actin from the 

myosin-extracted residue. Since the A-band is the region containing 

the thick filaments and the I-band is the region containing the thin 

filaments, the results suggest that the thick filaments are composed of 

myosin whereas the thin filaments are composed principally of actin. In

deed, many subsequent studies using both selective extraction techniques 

(Hanson and Huxley, 1955; Corsi and Perry, 1958; Corsi et a^., 1967) 

and fluorescent antibody labeling (Szent Gyorgyi and Holtzer, 1960) have 

now left little doubt that myosin is localized exclusively in the thick 

filaments and that actin is confined to the thin filaments. In fact, 

since Huxley (1963) and Katciner and Bell (1956) have, by careful manipula

tion of the pH and ionic strength of purified myosin solutions, been able 

to reconstitute filaments closely resembling native thick filaments, it 

is now generally felt that the thick filaments are composed almost en

tirely of myosin. On the other hand, the thin filaments almost certainly 

contain other proteins in addition to actin (Endo et al., 1966; Ohtsuki 
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et al., 1967; Corsi ̂  a^., 1967). 

Although the contractile machinery of muscle consists principally 

of actin and myosin, and the study of myofibrillar protein extraction 

must be concerned chiefly with the extraction of these two proteins, a 

number of other proteins have been found in the myofibril in lesser 

quantities. These proteins ostensibly regulate or affect the response 

of act in and myosin to Mg^^ and ATP, and for this reason, they are often 

referred to collectively as "regulatory proteins". The first of these 

regulatory proteins to be discovered was tropomyosin whose isolation and 

properties were first described by Bailey (1946). Several studies (Perry 

and Corsi, 1958; Endo et al., 1966; Corsi et a]^., 1967) have shown that 

tropomyosin is located along the length of thin filament. Although 

there have been several suggestions that tropomyosin was also located in 

the Z-band (Corsi and Perry, 1958; Endo et a^. j 1966; Huxley, 1963), re

cent results (Stromer et al., 1969; and Caspar et a 1.^), indicate 

that the Z-line contains little if any tropomyosin. Troponin, a more re

cently discovered regulatory protein (Ebashi and Kodama, 1965), is ap

parently distributed in periodic fashion along the thin filament, but is 

not present in either the thick filaments or the Z-line (Ohtsuki et al., 

1967). a-actinin, a third regulatory protein appears to be located 

either in the Z-disk or at the junction of the Z-disk with the thin fila

ments (Briskey £t £1.j 1967b; Masaki ̂  a^., 1967 ; Goll ̂  a^., 1969 in 

press). All three of these regulatory proteins can be at least partially 

^Caspar, D. L. D., C. Cohen and W. Longley, Children's Cancer Re
search Foundation, Boston, Massachusetts. X-ray diffraction of tropomyo
sin crystals and the Z-line. Private communication. 1969. 
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extracted from washed myofibrils in a form free of actin or myosin by 

swelling the myofibrils in low ionic strength solutions for a period of 

several days (Ebashi and Ebashi, 1965; Perry and Corsi, 1958; Perry et al., 

1966; Schaub et al., 1967a; 1967b; Arakawa et a_l., 1969 in press). This 

extraction is enhanced if the pH is adjusted to 8.0 - 8.5. Because of 

their solubility in very low ionic strength solutions, it is difficult to 

ascertain the effects of the regulatory proteins on myosin and actomyosin 

extraction, although O-actinin, because of its supposed location at or near 

the Z-line, may well be important in rupture of the bonds between the thin 

or actin filaments and the Z-disk. Banga and Szent Gyorgyi (1941) sug

gested that such a rupture must precede actin solubilization. This prob

lem will be discussed in more detail after first reviewing some more re

cent studies on actomyosin extraction. 

According to Banga and Szent Gyorgyi's hypothesis on the mechanism 

of myosin and actomyosin extraction, it should be impossible by the use 

of high ionic strength salt solutions to extract anything other than 

actomyosin from washed myofibrils which do not contain any ATP. Con

versely, if ATP or pyrophosphate is added to the extraction solution, it 

should be possible to extract myosin free from actin from washed myofibrils. 

Several early studies suggested that this was indeed the case (Hanson 

and Huxley, 1953; Hasselbach and Schneider, 1951). However, Perry and 

Gcrsi (1958) indicated that they found it impossible to extract actin-

free myosin from either fresh or glycerinated myofibrils even though 

solutions of varying ATP or pyrophosphate concentration with and without 

added MgCl2 were used. ATP was shown to be present throughout the ex-



www.manaraa.com

11 

traction period. Several years earlier. Perry (1955) had reported that 

whereas the Hasselbach-Schneider solution selectively extracted L-myosin 

from fresh whole minced muscle, this same solution extracted actomyosin 

from myofibrils prepared from fresh muscle. If, however, the muscle was 

allowed to pass into rigor before preparing the myofibrils, the 

Hasselbach-Schneider solution then selectively extracted myosin. Thus, 

the extraction of myosin and actomyosin from myofibrils did not appear to 

conform to the simple principles formulated earlier by Banga and Szent 

Gyorgyi (1941). 

Between 1958 and 1966 most of the work on myosin and actomyosin 

extraction was directed toward investigation of the rate of actomyosin 

formation in high ionic strength suspensions of minced whole muscle. 

A controversy had developed about 1956-58 between Morales's and 

Gergely's laboratories concerning the effect of ATP on myosin B or 

natural actomyosin solutions (Von Hippel et , 1958; 1959; Gellert 

et a_l., 1959; Gergely, 1956; Gergely and Kohler, 1958). Morales inter

preted his results as indicating that ATP caused myosin B particles to 

extend at constant molecular weight but Gergely maintained that ATP dis

sociated myosin B into two smaller particles, actin and myosin. Much 

of the disagreement was found to originate from the circumstance that 

Morales used a 5-hour extraction of minced whole muscle with Weber-

Edsall solution to prepare myosin B, whereas Gergely used a 24-hour 

extraction with the same solution. Careful examination, using both 

analytical ultracentrifugation and light scattering on the myosin B 

preparations resulting from these two extraction methods (Von Hippel 
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et a^., 1958; 1959), demonstrated that three classes of particles could 

be found in the 5-hour myosin B, but that the 24-hour myosin B appeared 

to contain only one or two classes of particles. About 65% of the pro

tein in the 5-hour "myosin B" preparation was, in fact, free myosin and 

only 34% of the 5-hour "myosin B" consisted of large particles resembling 

actomyosin. These large particles could be further divided into a heavy 

group which appeared to elongate without dissociation upon the addition 

of ATP, and a light group which dissociated upon the addition of ATP. 

Gergely's 24-hour myosin B consisted principally of this light group of 

large particles with a trace of the heavy group, but did not contain any 

detectable free myosin. This difference in composition explained the 

observed differences in interaction with ATP. 

Since the 5-hour myosin B ostensibly contained both myosin and ac

tomyosin, actin extraction presumably commences sometime between 30 min

utes and 5 hours after suspension of minced muscle in Weber-Edsail solu

tion. Maruyama and his associates have carefully examined the time 

course of actomyosin extraction in an effort to ascertain whea actin 

extraction begins and to relate the onset of actin extraction to the ATP 

content of the suspension (Noda and Maruyama, 1959; Ishiyama, 1960; Haga 

et al., 1965). Myosin A appeared to be the main component in both 1-

and 5-hour extracts although minced muscle which had been allowed to sit 

at 2° for 1 hour after death of the rabbit and then extracted for 4 

hours (to give a total post-mortem time of five hours) appeared to contain 

a relatively small amount of actomyosin as well as myosin. Extraction 

of minced muscle starting at 5 hours post-mortem and continuing to 24 
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hours post-mortem yielded some typical natural actomyosin which had a 

particle length somewhat larger than that of the normal 24-hour myosin B 

preparation. These observations were in close agreement with the results 

earlier reported by Morales (Von Hippel et a^., 1958; 1959) except that 

Morales obtained 65% myosin A in their 5-hour extracts compared to the 

90% myosin A yield found by Noda and Maruyama. A year later, Ishiyama 

(1960) followed actomyosin extraction while simultaneously measuring 

the ATP concentration of the muscle suspension. His results appeared 

to confirm the pioneering research of Banga and Szent Gyorgyi (1941) 

that the extraction of actomyosin starts only after the intrinsic ATP 

of the muscle mince is hydrolyzed by the ATPase activity of myosin. 

A much more extensive investigation of the time course of actomyosin 

extraction was reported in 1965 by Haga et al. (1965). These workers 

used viscosity, turbidity, flow birefrigence, analytical ultracentrifuga-

tion, and ATPase measurements to study the nature of the protein solu-

bilized from minced rabbit muscle by Weber-Edsall solution. They observed 

a remarkable increase in viscosimetric activity of extracts (indicating a 

higher actomyosin content) between 10-20 hours of extraction. The vis

cosimetric activity of the extracts reached a maximum value after 2 0 

hours of extraction and did not change with longer extraction periods up 

to 30 hours. Also, an appreciable increase in turbidity occurred be

tween 10 and 20 hours of extraction. This turbidity decreased greatly 

on addition of ATP and showed an almost constant value for myosin B which 

had been extracted for longer than 15 hours. These results indicate the 

formation of large macromolecules, which are sensitive to ATP, in the 
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minced muscle suspensions between 10 and 20 hours of extraction. Further

more, Ca''"''-modified ATPase activity of the extracted protein at 10 mM 

KCl was high after 1 or 5 hours of extraction and then decreased slowly 

with longer extraction times. On the other hand, the Mg"^"^-modified 

ATPase activity of the extracted protein was very low after 1 and 5 

hours of extraction and then increased with increasing extraction time, 

with the largest increase occurring between 10 and 12 hours of extraction. 

Since myosin ATPase is inhibited by Mg^^ but activated by Ca"*"*" and 

actomyosin ATPase activity is activated by Mg"*"^, these results suggest 

that the extraction of actin occurs after 5 hours, with the greatest ex

traction occurring between 10-12 hours after initial suspension. Schlieren 

diagrams of analytical ultracentrifuga1 runs also indicated that after 5 

hours of extraction, the area under the slow (about 6S) myosin peak de

creased and the area under the fast (about 30-50S) actomyosin peak in

creased. This change was again most evident between 10 and 15 hours of 

extraction. The results of all their physico-chemical determinations 

being in good agreement, Haga ̂  al^. (1965) concluded that during high 

ionic strength extraction of minced muscle, myosin is first solubilized 

from muscle mince and then between 10 and 2 0 hours of extraction is 

transformed to actomyosin. Thus, Haga et a_l. placed the start of actin 

solubilization at approximately 10 hours after suspension of minced mus

cle in a high ionic strength solution at 2°C. This is about the same 

time that Ishiyama's earlier work (Ishiyama, 1960) showed that ATP dis

appeared in the muscle suspensions. 
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However, the manner in which the F-actin in the muscle residue was 

solubilized to combine with myosin and form actomyosin remained unclear. 

Recently, Haga et a^. (1966a) have suggested that F-actin filaments, 

1 u in length, are solubilized intact and form the core of the natural 

actomyosin particles. This may account for the uniformity of particle 

length usually seen in myosin B preparations. This length ranges be

tween 1.0 to 2.4u (Haga et a^., 1966a), close to the length of native 

thin (actin) filaments. Electron microscopic observations indicated 

that solubilization of actin was preceded by separation between the thin 

filaments and the Z lines (Haga et a^., 1966b). Both 0.6 M KCl contain

ing myosin or 0.6 M KCl containing 1 - 10 mM Ca"'"'' solubilized actin fila

ments from a fibrous residue which had been prepared by selectively ex

tracting myosin from minced muscle. A solution of 0.6 M KCl, however, 

did not liberate any protein from this fibrous residue, but vigorous 

mechanical disintegration did enhance F-actin extraction. 

Although the studies between 1958 and 1966 appeared merely to con

firm and extend Banga and Szent Gyorgyi's original ideas on myosin and 

actomyosin extraction, there have been two recent reports which indicate 

that ATP may not have the role of actin-myosin dissociation as is en

visaged by the Banga-Szent Gyorgyi theory. Barber and Canning (1966) 

investigated the problem of myosin and actomyosin extraction from myo

fibrils, using myofibrils which had been purified free from contaminating 

ribonucleic acid and sarcoplasmic reticular membranes by means of density 

gradient centrifugation. Extraction of such purified myofibrils by a 0.5 

M KCl, 0.1 M Tris, 2x10"^ M ATP solution at pH 8.0 yielded only myosin. 
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even when the extraction was prolonged overnight to insure complete de

gradation of the ATP. When elements of the sarcoplasmic reticulum were 

added to the purified myofibrils, this same salt solution specifically 

extracted actomyosin from the myofibrils, even with short extraction 

times. Although Barber and Canning could not offer an explicit ex

planation for their results, they did suggest that the Ca"'"''-binding 

ability of the sarcoplasmic reticulum vesicles may be involved. 

The second report, which also appeared in 1966, was a paper by 

Mihalyi and Rowe (1966) which showed that actomyosin extraction, even 

from whole muscle minces, was prevented by the presence of 0.2 M phos

phate in the extracting solution, even though the degradation rate of 

the intrinsic ATP of the muscle mince was not affected by the presence 

of phosphate. These authors proposed that inorganic phosphate as well 

as ATP and pyrophosphate act to preserve or strengthen the bonds between 

the thin filaments and the Z disk and that this preservation effect rather 

than the actomyosin dissociating effect of ATP or pyrophosphate is re

sponsible for the prevention of actomyosin extraction by these two anions. 

The omission of phosphate from the extracting solutions led first to the 

appearance of myosin in the extracts after 30 - 60 minutes of extraction 

and then to the presence of actomyosin after 10 - 12 hours of extraction. 

This demonstrated that the inhibition of actomyosin extraction was, in 

fact, due to the presence of phosphate in the extracting solutions. 

Shortly after Mihalyi and Rowe's report, Chaudhry et a_l. (in press) also 

noted the failure of a high ionic strength phosphate containing solution 

to extract typical actomyosin from myofibrils, even in the absence of 
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pyrophosphate and ATP. However, the mechanism whereby phosphate, pyro

phosphate, and ATP exert their effects remains unknown. 

It occurred to us that there might be some connection between these 

last two reports on myosin and actomyosin extraction and the findings by 

Haga et al. (1966b) that Ca^^ appeared to loosen the bonds between the I-

and Z-filaments. The sarcoplasmic reticulum normally contains a sub

stantial amount of bound Ca"*"*" but loses the ability to hold this Ca"'"'" 

in the absence of ATP; thus, the addition of the elements of the sarco

plasmic reticulum to the myofibrils in Barber and Canning's study (1966) 

would also mean the addition of substantial amounts of Ca"'"'' to the ex

traction mixture. If Ca^^ loosens the I-Z bonds, then added Ca^'"' might 

enhance actin solubilization and thereby explain the actomyosin extrac

tion which Barber and Canning (1966) observed only in the presence of 

sarcoplasmic reticulum. Furthermore, since inorganic phosphate, pyro

phosphate, and ATP are all good Ca"*"^ chelators, the Ca"*"^ chelating 

abilities of these anions may account for their ability to inhibit acto

myosin extraction in Mihalyi and Rcwe's (1966) studies. Therefore, we 

decided to re-examine the extraction of myosin and actomyosin from muscle, 

with particular emphasis on the possible role of Ca"*"^ in actomyosin ex

traction. 
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MATERIALS AND METHODS 

The report (Mihalyi and Rowe, 1966) that high ionic strength phos

phate buffers would extract only myosin and not actomyosin from minced 

rabbit muscle formed the basis for this study. A number of preliminary 

experiments confirmed the lack of actomyosin extraction by phosphate-

containing buffers if such extractions were done by using minced whole 

rabbit muscle and in the absence of stirring. On the other hand, a 

thorough homogenization of myofibrils preceding their extraction by high 

ionic strength phosphate buffers led to the appearance of a viscous 

actomyosin-like protein solution which appeared polydisperse in the 

analytical ultracentrifuge. The results of this investigation will be 

reported in the form of ten separate experiments, with each experiment 

consisting of two or more animals. 

Preparative Procedures 

The back and leg muscles of rabbits constituted the experimental 

material in this study. The rabbits were anesthetized by intravenous 

injection of 0.5 cc of d-tubocurarine chloride (3 mg/cc) mixed with 1.5 cc 

of 60 mg/ml nembutol and immediately exsanguinated and skinned. The 

back and leg muscles were excised, carefully cleaned of adhering fat and 

connective tissue and minced in a meat grinder. Samples of the minced 

muscle were then used either for direct extraction of myofibrillar pro

teins with different extraction media or for preparation of myofibrils 

which were then used for studies of myofibrillar protein extraction. 
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Extraction of minced whole muscle 

Quadruplicate 5-gram samples of minced muscle were weighed directly 

into 250 ml centrifuge bottles, suspended by use of a stirring rod in five 

volumes (v/w) of a particular solution and kept without further stirring 

at 2°C. Salt solutions used for extraction of muscle mince in various 

experiments were as follow; (1) Potassium chloride-potassium phosphate, 

pH 6.5, ry2 = 0.65, composed of 0.2 M K-phosphate and 0.3 M KCl; (2) 

Potassium chloride-potassium phosphate, pH 7.6, F/2 = 0.65, composed of 

0.2 M K-phosphate, 0.1 M KCl; (3) Potassium chloride - Tris-HCl, pH 

7.6, r/2 = 0.65, composed of 0.2 M Tris, 0.5 M KCl; (4) Solution No. 3 

plus 10 mM EGTA; (5) Solution No. 3 plus 10 mM Ca"*"*". 

The preceding solutions were precooled to 2°C before use and all 

subsequent preparative procedures were conducted at 2°C using solutions 

precooled to 2°C. After a given period of extraction, one of the four 

centrifuge bottles containing minced muscle suspension was centrifuged 

in a Sorvall refrigerated centrifuge at 10,000 x £ for 15 minutes. Ex

traction times of 3, 6, 12 and 24 hours were used in each experiment in 

this investigation. Following centrifugation, the supernatant was de

canted into a graduated cylinder and diluted 15 times (v/v) with glass-

distilled, deionized water to obtain an ionic strength of 0.04. The 

diluted extracts were centrifuged at 10,000 x ̂  for 15 minutes, the pre

cipitate dissolved in 0.5 M KCl, and the protein reprecipitated by 12-

fold dilution to an ionic strength of 0.04. The precipitated protein 

was collected by centrifugation at 10,000 x ̂  for 15 minutes and the dis-

solution-reprecipitation cycle repeated two more times. The precipitate 
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from the final reprecipitation was dissolved in 0.5 M KCl, kept over 

night in the refrigerator and then filtered through glass wool. The 

filtered solution was used for subsequent studies on the proportion of 

myosin and actocyosin extracted. 

Preparation of myofibrils 

Three different methods were used to prepare myofibrils in this 

study. The back and leg muscles of rabbits were used in all three 

preparations and all preparations were done at 2°C using precooled solu

tions. In the most frequently used method (hereafter referred to as su

crose myofibrils), minced muscle was suspended in 10 volumes (v/w) of 

0.25 sucrose, 0.05 Tris and 1 mM EDTA, pH 7.6, by using three 15-second 

homogenizations in a Waring blender, with an interval of 45 seconds be

tween each homogenization. The myofibrils were sedimented at 1000 x ̂  

for 10 minutes in a MSE Model-6L centrifuge and then resuspended in 5 

volumes (v/w) of the same sucrose solution by a 10-second homogenization. 

The myofibrils were again sedimented at 1000 x ̂  for 10 minutes and re-

suspended in 5 volumes (v/w) of 0.05 M Tris, 1 mM EDTA, pH 7.6, by a 15-

second homogenization. This suspension was passed through a polyethylene 

net to remove connective tissue, and the strained myofibrils were then 

sedimented at 10 00 x for 10 minutes. The sedimented myofibrils were 

washed once by suspension in 0.15 H KCl followed by centrifugation at 

1 0 0 0 X ̂  for 10 minutes, and the sedimented myofibrils were than sus

pended in various solvents depending on the experiment. 

In one experiment, myofibrils (phosphate myofibrils) were prepared 
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by a gentle suspension of minced muscle in a 0.03 M potassium phosphate 

buffer pH 7.4. a stirring rod was used te effect the suspension instead 

of the homogenization used for the sucrose myofibrils. After a 2-hour 

extraction, the suspension was centrifuged for 10 minutes at 10,000 x 

the supernatant discarded, and the myofibrillar residue resuspended by 

means of a stirring rod in 0.03 M potassium phosphate for a second 2-

hour extraction. The myofibrils were again sedimented at 10,000 x 

for 10 minutes and the sedimented myofibrils then used directly for ex

traction. 

In a third kind of experiment, myofibrils were again prepared by 

gentle suspension of muscle mince with a stirring rod, but with a 0.03 M 

Tris buffer, pH 7.4, substituted for the 0.03 M potassium phosphate buffer 

(Tris myofibrils). The extraction times and sedimentation procedures 

were exactly as described for the phosphate myofibrils. 

Extraction of myofibrils 

Myofibrils obtained by the methods described in the preceding section 

were extracted by using one of the following salt solutions: (1) potassium 

chloride-potassium phosphate, pH 6.5, ^/2 = 0.65, composed of 0.2 M K 

phosphate, 0.3 M KCl; (2) potassium chloride-potassium phosphate, pH 

7-6, *1/2 = 0.65, composed of 0.2 M K phosphate, 0.1 M KCl; (3) potassium 

chloride-Tris-HCl, pH 7.6, P/2 = 0.65, composed of 0.2 M Tris, 0.5 M KCl; 

(4) Solution No. 3 plus 10 rnî-î EGTA; (5) Solution No. 3 plus 10 mM Ca"*"*". 

In each experiment, 5-gram samples of myofibrils were placed in each 

of four 250 ml centrifuge bottles, and all four samples were then suspended 
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in one of the solutions just listed. After either 3, 6, 12, 24 hours of 

extraction, one of the myofibrillar suspensions was centrifuged for 15 

minutes at 10,000 x and the supernatant filtered through glass wool. 

Aliquots of the filtered solution were dialyzed for 2# hours against four 

changes of 0.4 M KCl to remove the various anions used in different ex

tracting solutions. The dialyzed solutions were used in the ATPase and 

turbidity studies described subsequently. Analytical ultracentrifuge and 

viscosity studies were done directly on the extracts without dialysis. 

Enzymic treatment of myofibrils In one experiment, myofibrils were 

subjected to a four-minute digestion by trypsin or papain. Purified tryp

sin powder, twice rec rys ta11i zed and free from salt, was purchased from 

Sigma Chemical Co. A crude papain powder was also purchased from Sigma 

Chemical Co. Both enzymes were dissolved in distilled water just prior 

to use. Digestion was done for four minutes at 25°C with enzyme to myo

fibrillar protein ratios of 1/300 (w/w). The digestion was done in 100 mM 

KCl, 100 mM Tris-HCl, pH 7.6. The trypsin reaction was stopped by addi

tion of a fourfold excess of crystallized soybean trypsin inhibitor (Sigma 

Chemical Co.) followed by sedimentation of the undigested myofibrils at 

1000 X ̂  for 5 minutes at 2°C. The myofibril residue was washed three 

times with 150 mM KCl to remove any last traces of the trypsin-trypsin 

inhibitor complex and then subjected to extraction by high ionic strength 

solutions. No specific inhibitor of papain digestion which would not also 

affect the myofibrillar proteins was available. Therefore papain digestion 

was stopped by rapid sedimentation of the undigested myofibrils at 3000 x g 

for 1 minute at 2°C followed immediately by five washes with 150 mM KCl at 

2°C. All five washes were completed within 15 minutes after the end of 
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the four-minute digestion period. The washed papain-treated myofibrils 

were then subjected directly to high ionic strength extraction. Prior 

to high ionic strength extraction, small aliquotes of both trypsin-

treated and papain-treated myofibrils were observed under the phase 

microscope. 

Protein determination 

Protein analysis of both myofibrillar fractions from whole ground 

muscle and from prepared myofibrils was done by the biuret analysis 

(Gornall ̂  , 1949; Robson et al., 1968). Standards consisted of 2.5, 

5.0, 7.5, and 10.0 mg of bovine serum albumin. 

Analysis of Myosin and Actomyosin Content 

After protein analysis, each extract of myofibrillar protein, whether 

from myofibrils or from minced whole muscle, was examined for actomyosin 

content by using three different tests. These tests were viscosity change 

upon addition of ATP, analytical ultracentrifugation, and comparison of 

the Ca++- and &%+*-modified ATPase activities. In a few experiments, the 

turbidity response to added ATP was also tested. 

Viscosity measurements 

The viscosity of the extracted myofibrillar proteins was measured at 

25°C by using an Ostwald viscometer with an outflow time of 72.5 seconds 

for 5 ml of water. Five-ml aliquots of the extracted protein at a con

centration of 2 mg/ml in 0.5 M KCl were placed in the viscometer and 

allowed to equilibrate for 3 minutes. Because of its thixotropic nature. 
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some difficulty is always encountered in attempting to accurately measure 

actomyosin's viscosity. However, since the viscosity of actomyosin in 

the absence of ATP is markedly higher than in the presence of ATP, this 

lack of precision was not a problem in our experiments. After equilibra

tion, the viscosity of the myofibrillar protein extract was measured, and 

then 0.25 ml of 0.1 M ATP together with 0.25 ml of 0.1 M MgClg were added 

directly to the viscometer and mixed with the myofibrillar protein ex

tract to yield 5.5 ml of a 0.45 M KCl, 4.5 mM Mg-ATP solution containing 

1.82 mg protein/ml. The viscosity of this resulting solution was measured 

as soon as possible after mixing. Relative viscosities were calculated 

from an average of three separate readings, both before and after ATP 

addition. The activity of the myofibrillar protein was then calculated 

from the formula first proposed by Portzehl et al. (1950). This formula 

is shown below: 

Inflrel - n. rel ATP 

Activity = 9. ^ X 100 
In rel ATP 

C 

where: 

is the relative viscosity before ATP addition, 

HxelATP the relative viscosity after ATP addition, and 

C and C are the concentrations of the protein in solution 
without and with ATP. 

Since the addition of 4 to 5 mM Mg-ATP at ionic strength above 0.4 

causes dissociation and a marked viscosity drop in actomyosin but does 

not affect the viscosity of myosin, a higher activity number indicates the 

presence of a larger proportion of actomyosin in the myofibrillar protein 

extract. 
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Sedimentation studies 

These were performed in the Spinco Model E analytical ultracentrifuge 

using the Schliern optical system at a temperature of 20°C. The solu

tions contained 4-10 mg protein/ml in the salt solutions used for ex

traction. Since the objective of this investigation was simply to as

certain whether myosin or actomyosin was present in the extracts and 

since actomyosin sediments much more rapidly than myosin (10 - 30s vs 

5 - 6s) the sedimentation coefficients were not measured for each ex

periment, but instead the sedimentation diagrams were merely inspected 

for the presence of the typical actomyosin or myosin pattern. 

ATPase determinations 

Disodium ATP purcha .d from Sigma Chemical Company was converted 

to the Tris salt by treatment with Dowex-50 in the form followed by 

neutralization with Tris. 

The enzymic assays were started by the addition of 0.25 ml of 0.01 M 

ATP. The conditions of the assays were as follows: 100 mM KCl, 50 mM 

Tris-acetate, pH 7.0, 1 mM MgCl2 or CaCl2» 0.2 mg protein/ml, 2.5 ml 

final volume. 

After 15 minutes of incubation at 25°C, the reaction was stopped by 

addition of 0.5 ml of 15% trichloroacetic acid. The protein precipitate 

was removed by centrifugation at 1000 x £ for 5 minutes and the inorganic 

phosphate content of the supernatant analyzed by the method of Taussky 

and Shorr (1953). Absorbancy was measured at wave-length of 385 mu 

exactly 900 seconds after addition of the molybdic acid reagent. A blank 
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tube containing ATP but no protein was run with each assay, and the in

organic phosphate concentration in this tube was subtracted from the 

phosphate concentration in the enzyme-containing tubes to correct for 

nonenzymatic breakdown of the ATP« Results were expressed as specific 

activity in u moles of inorganic phosphate released/minute/mg of protein. 

Since actomyosin is insoluble at the ionic strength of the assay, the 

assay mixture was stirred magnetically by a Mark I magnetic stirrer from 

Cole-Farmer. 

Turbidity assay 

These were done essentially as described by Seraydarian et al. 

(1967). The conditions of the assay were: 50 mM KCl, 20 mM Tris-

acetate, pH 7.0, 1 mM WgCl2> 0.5 mM CaCl2, 1 mM ATP, 0.5 mg protein/ml, 

25-27°C, final volume of 3.0 ml. The reaction was initiated by the ad

dition of 0.30 ml of 0.01 M ATP, and the turbidity at 660 nm followed 

immediately after mixing. A large increase in turbidity immediately 

after ATP addition is indicative of a substantial amount of actomyosin 

in the protein extract. 



www.manaraa.com

26 

RESULTS 

The extensive microscopic studies of H. E. Huxley (1963) point to 

the fact that actomyosin does not exist in muscle in the same form as 

encountered in solutions of natural, or synthetic actomyosin. Therefore, 

the extraction of actomyosin must proceed through disintegration of the 

myofibrillar structures, followed by the reassociation of the extracted 

proteins in a less structured form. Myosin is completely soluble in the 

high ionic-strength salt solutions normally used for actomyosin extrac

tion. The actin filaments, on the other hand, appear to be firmly at

tached to the Z-disk. Consequently, the appearance of actomyosin in 

salt extracts is linked to the solubilization of actin from the thin 

filaments, and the study of actomyosin extraction becomes an investiga

tion of how to break the bonds between the thin filaments and the 2-disk. 

The results of this study will be reported in the form of ten experiments, 

each designed to test the extraction properties of two different ex

tracting solutions on the same muscle tissue sample. Each experiment in

volved at least two, and in many cases, more than two different animals. 

Experiment I 

This experiment was done to check Mihalyi and Rowe's (1966) observa

tion that high ionic strength phosphate buffers will extract only myosin 

and not actomyosin from minced rabbit muscle. The two solutions used 

were a KCl-phosphate buffer at pH 7.6 ( P/2 = 0.65) and a KCl-Tris-HCl 

buffer at pH 7.6 (1^/2 = 0.65). The viscosimetric activity of the protein 

extracted by these two solutions is shown in Table 1. The KCl-phosphate 
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Table 1. Viscosimetric activity of protein extracted from minced rabbit 
muscle by KCl-phosphate cr KCl-Tris-HCl at pH 7.6 

Time of Extracting solution 
extraction KCl- KCl-
(hr) phosphate Tris-HCl 

3 0.0 0.0 

6 0.0 0.6 

12 0.0 3.8 

24 1.61 57.2 

solution solubilized only myosin even with extraction times up to 24 

hours, whereas the KCl-Tris-HCl buffer extracted actomyosin, with most 

of the actomyosin extraction occurring between 12 and 24 hours of ex

traction. The very small viscosimetric activity observed in the phos

phate extract after 24 hours and in the KCl-Tris extract after 6 to 12 

hours is not indicative of the presence of any significant amount of 

actomyosin because the presence of actomyosin will generally result in 

viscosimetric values above 50. 

These viscosimetric results confirm Mihalyi and Rowe's findings and 

are substantiated by the ATPase activity measurements given in Table 2. 

There was almost no Mg"*"*"-modified ATPase activity in the KCl-phosphate 

extracts, but the KCl-Tris extract possessed a significant Mg**-modified 

ATPase activity, particularly after 24 hours of extraction. The analytical 

ultracentrifugal patterns shown in Figure 1 also point to the same con

clusion. Only a single hyper-sharp peak with a sedimentation coefficient 
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Figure 1. Sedimentation patterns of protein extracted from minced whole rabbit muscle by KCl-
Tris or KCl-phosphate solutions. 

a) After extraction for 12 hr with 0.5 M KCl, 0.2 M Tris-HCl, pH 7.6, V/2 = 0,65, 
4.0 mg/ml. 

b) After extraction for 12 hr with 0.1 M KCl, 0.2 M K-phosphate, pH 7.6, r/2 = 0.65, 

4.0 mg/ml. 

c) After extraction for 24 hr with 0.5 M KCl, 0.2 M Tris-HCl, pH 7.6, r/2 = 0.65, 
4.0 mg/ml. 

d) After extraction for 24 hr with 0.1 M KCl, 0.2 M K-phosphate, pH 7.6, ^/?. = 0.65, 
4.0 mg/ml. 
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Table 2. ATPase activity of protein extracted from minced rabbit muscle 
by KCl-phosphate or KCl-Tris-HCl at pH 7.6 

Time of KCl-phosphate KCl-Tris--HCl 
extraction Ca++ Mg++/Ca++ Mg++ Ca++ Mg++/Ca++ 

(hr) (u mole/mg/min (u mole/mg/min) 

3 .000 .255 

o
 
o
 .010 .239 .04 

6 .000 .270 

o
 
o
 .013 .297 .04 

12 .000 .265 o
 
o
 

.017 .305 .06 

24 .004 .248 o
 

ro
 

.044 .255 .17 

of 5S is seen in the KCi-phosphate extract after either 12 or 24 hours of 

extraction, bat a series of rapidly sedimenting peaks characteristic of 

actomyosin is seen in the 24-hour KCl-Tris extract. 

Experiment II 

Our first experiment suggested that high ionic strength phosphate-

containing buffers would not extract actomyosin from minced muscle at 

pH 7.6. In order to extend this conclusion, this second experiment was 

designed to test the actomyosin extraction abilities of phosphate-con

taining buffers at several different pH values. KCl-phosphate solutions 

at pH 6.5 and 7.6 (both at an ionic strength of 0.65) were used. The 

viscosimetric results in Table 3 show that no actomyosin was extracted 

from minced rabbit muscle after 3, 6, 12, or 24 hours of extraction with 

KCl-phosphate solution at either pH 6.5 or 7.6. Although the viscosimetric 

activities appeared to increase slightly after 24 hours of extraction at 
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either pH 6.5 or 7.6, these activities are still very low compared to 

activities of over 50 which are typical of actomyosin, and it is possible 

that these low activities reflect the presence of aggregated myosin 

rather than actomyosin. The viscosimetric results are substantiated by 

the ATPase measurements showing almost no Mg**-modified ATPase activity 

in any of the extracts (Table 4). 

Table 3. Viscosimetric activity of protein extracted from minced rabbit 
muscle by KCl-phosphate at pH 6.5 or 7.6 

Time of Extracting solution 
extraction KCl-phosphate KCl-phosphate 

(hr) pH 6.5 pH 7.6 

3 1.35 O
 
o
 

6 1.35 0.0 

12 1.34 0.0 

24 5.45 1.61 

Table 4. ATPase activity of protein extracted 
by KCl-phosphate at pH 6.5 or 7.6 

from minced rabbit muscle 

Time of KGl -phosphate, pH 6.5 KCl-phosphate, pH 7.6 

extraction Mg"*"*" Ca"*"^ Mg''"''/Ca++ 
(hr) (u mole/mg/min) 

Mg++ Ca++ Mg++/Ca++ 

(u mole/mg/min) 

3 .014 .110 .13 .000 .255 " .00 

6 .012 .105 .11 .000 .270 .00 

12 .018 .118 -15 .000 -265 .00 

24 .027 .143 .19 .004 .248 .02 



www.manaraa.com

Sedimentation patterns of the KCl-phosphate extracts at either pH 

6.5 or 7.6 (Figure 2), showed, in both cases, a single hyper-sharp peak 

sedimenting at the rate characteristic of myosin. No rapidly sedimenting 

actomyosin peaks were visible in any of the samples in this experiment, 

further supporting the conclusion based on the viscosimetric and ATPase 

activities. 

Experiment III 

The first two experiments established the fact that high ionic 

strength phosphate buffers would not extract actomyosin from minced rab

bit muscle at pH values near neutrality, thereby confirming Mihalyi and 

Rowe's suggestion that phosphate appears to strengthen or stabilize the 

bonds between the I- and Z-filaments. Since Maruyama (1966) had sug-

tested that the I-Z bonds may be ruptured by mechanical agitation, the 

effect of gentle magnetic stirring on the extraction of minced muscle by 

phosphate buffers was investigated. The extracting solution used was 

KCl-phosphate, pH 7.6, r/2 = 0.65. The results in Table 5 indicate that 

constant stirring causes a significant extraction of actomyosin, even by 

phosphate-containing buffers. This extraction evidently commences be

tween 6 and 12 hours of extraction and continues up to at least 24 hours 

of extraction. In the absence of any mechanical agitation, no actomyo

sin was extracted, in agreement with the result of the first two ex

periments in this study. 

The results of the ATPase assays (Table 6) confirmed the viscosi

metric data because a significant amount of Mg**-modified ATPase activity 
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Figure 2. Sedimentation patterns of protein extracted from minced whole rabbit muscle by KCl-
phosphate buffers at pH 6.5 or 7.6. 

a) After extraction for 12 hr with 0.3 KCl, 0.2 M K-phosphate, pH 6.5, r'/2 = 0.65, 
4.8 mg/ml. 

b) After extraction for 2U hr with 0.3 M KCl, 0.2 M K-phosphate, pH 6.5, ^/2 = 0.65, 
2.8 mg/ml. 

c) After extraction for 12 hr with 0.1 M KCl, 0,2 M K-phosphate, pH 7.6, r/2 = 0.65, 
4.0 mg/ml. 

d) After extraction for 24 hr with 0.1 M KCl, 0.2 M K-phosphate, pH 7.6, ^/2 = 0.65, 
4.0 mg/ml. 
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Table 5. Viscosimetric activity o£ protein extracted Erom minced rabbit 
muscle by KCl-phosphate at pH 7.6 

Time of Extracting solution 
extraction KCl-phosphate KCl-phosphate 

(hr) (not stirred) (stirred) 

3 o
 
o
 

0.6 

6 0.0 7.0 

12 0.0 33.2 

24 1.6 83.7 

Table 6. ATPase activity of 
by KCl-phosphate at 

protein extracted from minced 
pH 7.6 

rabbit muscle 

Time of KCl-phosphate 
extraction Not stirred Stirred 

(hr) Mg"'"^ Ca++ 

(u mole/mg/min) 

Mg++/Ca++ Mg++ Ca++ 

(u mole/mg/min) 

Mg++/Ca++ 

3 .000 .255 .00 .015 .304 .05 

6 .000 .270 .00 .027 .328 .08 

12 .000 .265 .00 .057 .276 .21 

24 .004 .248 .02 .085 .218 .39 

existed in the stirred solutions, but no Mg"'"'"-modified ATPase activity 

was detectable in the unstirred extracts. Moreover, ultracentrifuge pat

terns of the protein extracted from the stirred muscle mince (Figure 3) 

are characteristic cf actomyosin, but the patterns of non-stirred muscle 

extracts exhibited only a single peak characteristic of myosin. 
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Figure 3. Sedimentation patterns of protein extracted from minced whole rabbit muscle by KCl-
phosphate in presence or absence of stirring. 

a) After extraction for 12 hr with 0.1 M KCl, 0.2 M K-phosphate, pH 7.6, V/1 = 0.65, 
stirred, U.O mg/ml. 

b) After extraction for 12 hr with 0.1 M KCl, 0.2 M K-phosphate, pH 7.6, r/2 = 0.65, 
not stirred, 4.0 mg/ml. 

c) After extraction for 24 hr with 0.1 M KCl, 0.2 M K-phosphate, pH 7.6, r/2 = 0.65, 
stirred, 4.0 mg/ml. 

d) After extraction for 24 hr with 0.1 M KCl, 0.2 M K-phosphate, pH 7.6, ry2 = 0.65, 
not stirred, 4.0 mg/ml. 
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Experiment IV 

Experiments I - III had investigated the effect of phosphate buffer 

on actomyosin extraction from minced whole muscle. Several early reports 

had indicated some unusual extraction patterns occurred when myofibrils 

were extracted instead of whole minced muscle. Since myofibrils contain 

no ATP, it would be expected that actomyosin extraction would commence 

immediately upon their suspension in a high ionic strength salt solution. 

Experiment IV was designed to test the effect of a high ionic strength 

phosphate buffer on actomyosin extraction from myofibrils. The Tris-

myofibrils, prepared as described in the Material and Methods section, 

were handled as gently as possible during preparation to prevent any 

mechanical rupture of the I-Z bonds, which would lead to subsequent 

actomyosin extraction, regardless of the extraction conditions. 

The viscosimetric results presented in Table 7 show that phosphate-

containing solutions do not extract an appreciable amount of actomyosin 

from myofibrils during even a 24 hour extraction period. On the other 

hand, the substitution of Tris-buffer at the same pH and ionic strength 

leads to the extraction of a considerable amount of actomyosin. This 

extraction begins about 3 hours and continues out to 2U hours after the 

initial suspension. It was noticed that all our myofibril extracts con

tained an appreciable amount of material which was heterogeneous in the 

analytical ultracentrifuge and which exhibited a weak viscosimetric re

sponse to ATP. This material was present already after three hours of 

extraction and accounts for the relatively high viscosimetric results ob

tained for the KCl-phosphate extracts. It is unlikely that this material 
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represents actomyosin in the usual sense because it did not possess a 

Mg••"•^-modified ATPase activity (Table 8) and did not exhibit the typical 

actomyosin schlieren diagram in the analytical ultracentrifuge (cf. Figure U). 

It may be a heterogeneous polymer of denatured myosin and actin. 

Table 7. Viscosimetric activity of protein extracted from unhomogenized 
myofibrils by KCl-phosphate or KCl-Tris-HCl at pH 7.6 

Time of Extracting solution 
extraction 

(hr) 
KCl-

plosphate 
KCl-

Tris-HCl 

3 13.3 24.2 

6 24.5 48.3 

12 24.5 60,1 

24 22.8 74.5 

Table 8. ATPase activity of protein extracted from unhomogenized myo
fibrils by KCl-phosphate or KCl-Tris-HCl at pH 7.6 

Time of KCl-phosphate KCl-Tris-HCl 
extraction Mg++ Ca+^ Mg++/Ca++ Mg++ Ca++ Mg++/Ca++ 

(hr) (u mole/mg/min) (u mole/mg/min) 

3 .008 .037 .22 .006 .030 .20 

5 .007 .030 .23 .017 .037 .46 

12 .009 .043 .21 .036 .078 .46 

24 .008 .035 .23 .051 .127 .40 
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Figure 4. Sedimentation patterns of protein extracted from unhomogenized or homogenized myofibrils 
by KCl-phosphate. 

a) After extraction of unhomogenized myofibrils for 3 hr with 0,1 M KCl, 0.2 M K-
phosphate, pH 7.6, ^/2 = 0.65, 3.46 mg/ml. 

b) After extraction of homogenized myofibrils for 3 hr with 0.1 M KCl, 0.2 M K-
phosphate, pH 7.6, P/2 = 0.65, 3.86 mg/ml. 

c) After extraction of unhomogenized myofibrils for 24 hr with 0,1 M KCl, 0.2 M K-
phosphate, pH 7.6, r/2 = 0.65, 4.56 mg/ml. 

d) After extraction of homogenized myofibrils for 24 hr with 0.1 M KCl, 0.2 M K-
phosphate, pH 7.6, ryz = 0.65, 3.93 mg/ml. 
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This suggestion is supported by the low Ca**-modiEied ATPase activities 

observed for all the myofibrillar extracts. 

Results of the ATPase test confirmed the viscosimetric data since 

the KCl-Tris extracts possessed a significant Mg^^-modified ATPase 

activity whereas the KCl-phosphate extracts exhibited no such activity 

(Table 8). 

Experiment V 

Experiment IV demonstrated that high ionic strength phosphate buf

fers would not extract actomyosin from myofibrils which had been pre

pared in a manner that would minimize mechanical rupture of I-Z bonds. 

Experiment V was designed to test whether the same phosphate buffers 

would extract actomyosin from myofibrils which had been subjected to 

homogenization during their preparation and therefore probably had some 

I-Z bonds mechanically broken. The viscosimetric results presented in 

Table 9 show that both KCl-phosphate and KCl-Tris extract considerable 

amounts of actomyosin from homogenized myofibrils. In fact, the visco

simetric data suggest that actomyosin extraction begins very quickly 

from homogenized myofibrils and a considerable amount of actomyosin is 

extracted within the first three hours after initial suspension. This 

occurs before even the KCl-Tris solution could extract actomyosin from 

the unhomogenized myofibrils (cf. Experiment IV). Thus, homogenization 

during myofibril preparation must lead to considerable rupture or weak

ening of the bonds between the I- and Z-filaments. 
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Table 9. Viscosimetric activity of protein extracted from homogenized 
myofibrils by KCl-phosphate or KCl-Tris-HCl at pH 7.6 

Time of Extracting solution 
extraction KCl- KCl-

(hr) phosphate Tris-HCl 

3 77.0 74.1 

6 99,6 83.7 

12 99.9 72.9 

24 102.6 72.5 

The experiment on ATPase activity of the KCl-phosphate and KCl 

Tris-HCl extracts (Table 10) confirmed the viscosimetric results. Both 

the ATPase data and viscosimetric results suggest that when homogenized 

myofibrils are extracted, KCl-phosphate solutions extract more actomyosin 

than a KCl-Tris solution. There is no evident explanation for this. 

Table 10. ATPase activity of protein extracted from homogenized myo
fibrils by KCl-phosphate or KCl-Tris-HCl at pH 7.6 

Time of KCl-phosphate KCl-Tris-HCl 
extraction Ca++ Mg++/Ca++ Mg++ Ca++ Mg++/Ca++ 

(hr) (u mole/mg/min) (u mole/mg/min) 

3 .061 .134 .46 .018 .102 .18 

6 .067 .120 .56 .017 .105 .16 

12 .095 .137 .69 .028 -151 .19 

24 .096 .137 .70 .046 .161 .29 
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Experiment VI 

Experiments IV and V shewed that high ionic strength KCl-phosphate 

solutions would not extract actomyosin from myofibrils unless the myo

fibrils were mechanically disrupted during their preparation. Experiment 

VI was conducted to extend and confirm this conclusion by using a direct 

comparison of KCl-phosphate extraction of two kinds of myofibrils, one 

homogenized and one not homogenized during preparation. The unhomogenized 

myofibrils in this experiment were prepared by gentle suspension in a 

0.03 M K-phosphate solution at pH 7.4 while the homogenized myofibrils 

were again prepared by homogenization in sucrose. Both kinds of myofibril 

preparations were extracted with KCl-phosphate, pH 7.6, ^/2 = 0.65. 

The viscosimetric activity (Table 11) of the extracts confirmed the 

previous conclusions since a considerable amount of actomyosin was ex

tracted from the homogenized myofibrils, but the extracts from the un

homogenized myofibrils exhibited only a very low viscosimetric activity, 

reminiscent of other KCl-phosphate extracts of myofibrils. This low 

viscosimetric activity was probably due to heterogeneous polymers of de

natured myosin and actin. The ATPase results (Table 12) were again in 

good agreement with viscosimetric data and indicated that actomyosin was 

extracted only from the homogenized myofibrils. The very low Ca**-

modified ATPase activity of extracts from the unhomogenized myofibrils 

lends support to the suggestion that the small amount of viscosimetric 

activity observed in these extracts originated from polymers of denatured 

myosin and actin. The conclusions of this experiment are further sub

stantiated by the sedimentation patterns of the protein extracts (Figure 4). 
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Table 11. Viscosimetric activity of protein extracted from rabbit myo
fibrils by KCl-phosphate at pH 7.6 

Time of 
extraction 

(hr) Unhomogenized myofibrils Homogenized myofibrils 

3 19.4 77.0 

6 26.8 99.6 

12 31.2 99.9 

24 35.2 102.6 

Table 12. ATPase activity of protein extracted from rabbit myofibrils 
by KCl-phosphate at pH. 7.6 

Time of Unhomogenized myofibrils Homogenized myofibrils 

extraction Mg^^ . Ca"*"^ Mg''"^/Ca'''+ Mg"^"*" Ca^^ Mg*^/Ca++ 
(hr) (u mole/mg/min) (u mole/mg/min) 

3 .017 .053 .32 .061 .134 .46 

6 .013 .055 .24 .067 .120 .56 

12 .011 .055 .20 .095 .137 .69 

24 .015 .040 00
 

.096 .137 .70 

As pointed out before the sedimentation patterns of protein extracted 

from myofibrils is very heterogeneous but it is possible to detect some 

rapidly sedimenting material characteristic of actomyosin in the protein 

extracted from homogenized myofibrils. This material is evident after 

only 3 hours of extraction. However, no actomyosin is visible in sedi

mentation patterns of the protein extracted from the unhomogenized 

myofibrils, even after 24 hours of extraction. 
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Experiment VII 

The previous experiments demonstrated that KCl-phosphate at pH 7.6 

would not extract actomyosin from myofibrils unless they had been homo

genized during their preparation. Experiment VII was done to determine 

whether a KCl-phosphate solution at pH 6.5, closer to the isoelectric 

points of myofibrillar proteins, would also extract actomyosin from homo

genized myofibrils. The viscosimetric activities presented in Table 13 

clearly show that KCl-phosphate solutions at pH 6.5 will extract actomyo

sin from myofibrils as rapidly and as efficiently as KCl-phosphate at pH 

7.6. Evidently, once the I-Z bonds have been weakened or broken, lower

ing the pH below 7.6 does not substantially lessen actomyosin extraction. 

Helander (1957) had shown that actomyosin extraction from whole minced 

rabbit muscle is suppressed at pH values below 7.6. It is possible, 

therefore, that the primary effect of high pH is to aid in weakening or 

rupturing the I-Z bonds. 

Table 13. Viscosimetric activity of protein extracted from homogenized 
myofibrils by KCl-phosphate at pH 6.5 or 7.6 

Time of extraction KCl-phosphate KCl-phosphate 
(hr) (pH 6.5) CpH 7.6) 

3 75,2 77.0 

6 131.2 99.6 

12 108.4 99.9 

24 99.9 102.6 

Again, the ATPase data (Table 14) are in good agreement with the 

viscosimetric results and confirm the conclusion that actomyosin ex

traction by KCl-phosphate solutions from homogenized myofibrils pro

ceeds equally well at either pH 6.5 or 7.6 
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Table 14. ATPase activity of protein extracted from homogenized myo
fibrils by KCl-phosphate at pH 5.5 or 7.6 

Time of KCl -phosphate pH 6.5 KCl-phosphate pH 7 .6 

extraction Mg+ + Ca++ Mg++/Ca++ Ng++ Ca++ Ng ++/Ca++ 

(hr) (u mole/mg/min) (u mo le/mg/min) 

3 .046 .126 .37 .061 .134 .46 

6 .034 .116 .29 .067 .120 .56 

12 .049 .143 .34 .095 .137 .69 

24 .090 .168 .54 .096 .137 .70 

Experiment VIII 

The first seven experiments of this study demonstrated that high 

ionic strength phosphate-containing buffers at pH values near neutrality 

are unable to extract actomyosin from either minced whole rabbit muscle 

or rabbit myofibrils unless the muscle is treated mechanically to weaken 

or rupture the bonds between the I- and the Z-filaments. In an effort 

to understand how phosphate may be acting to strengthen or stabilize the 

I - Z-bonds, the report of Haga ̂  al. (1966b) came to mind. These in

vestigators had shown that Ca"*"*" appeared to enhance actin solubilization 

from fibrous myofibrillar residues from which all myosin had been ex

tracted. Since phosphate is a good Ca+* chelator, it was hypothesized 

that Ca"*""" was necessary to loosen actin filaments from their attachment 

to the Z-line, and that the effect of phosphate was to chelate this Ca**, 

preventing it from loosening the I- Z-bonds and thereby preventing acto

myosin extraction. To test this hypothesis, minced rabbit muscle was 
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extracted by a KCl-Tris solution at pH 7.6 containing either 10 mM EGTA 

or 10 mM Ca+*. EGTA is a strong Ca*^ chelator but has a low (approximate

ly 10^) binding constant for Mg"*"^-

The viscosimetric activities of the protein extracts solubilized by 

these two solutions are shown in Table 15. The extract from the KCl-

Tris solution containing 10 mM Ca** exhibited a considerably higher vis

cosimetric activity than the extract from the solution containing EGTA. 

However, even in the presence of 10 mM EGTA, a small but significant 

amount of activity appeared in the supernatant. Although these viscosity 

results suggest that Ca** promotes and EGTA inhibits the extraction of 

actomyosin from minced rabbit muscle, the interpretation is complicated 

by the results of the ATPase tests on these extracts (Table 16). For 

reasons which are not clear, neither the EGTA- nor the Ca++-extract ex

hibited any significant amount of Mg"*"*"-modified ATPase activity. It is 

unlikely that the myosin in the Ca^^-extract was denatured, since the 

Ca++-modified ATPase activity of this extract is high. Ultracentrifuge 

studies of these extracts (Figure 5) clearly show that KCl-Tris-EGTA 

extract contains principally myosin with perhaps a very small amount of 

rapidly sedimenting material resembling actomyosin also present. This 

result is in agreement with the viscosity and ATPase assays on this extract-

The KCl-Tris-Ca^* extract, on the other hand, exhibits a very unusual sedi

mentation diagram (Figure 5) consisting of several rapidly sedimenting 

peaks, possibly indicative of actomyosin, together with a more slowly 

sedimenting peak possessing a sedimentation coefficient characteristic 

of myosin. 
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Figure 5. Sedimentation patterns of protein extracted from minced whole rabbit muscle by KCl-Tris-
HCl in the presence of 10 mM BGTA or 10 mM Ca**. 

a) After extraction for 12 hr with 0.5 M KCl, 0.2 M Tris-HCl, 10 mM EGTA, pH 7.6, 
ry2 = 0.65, 4.0 mg/ml. 

b) After extraction for 24 hr with 0.2 M KCl, 0.2 M Tris-HCl, 10 mM BGTA, pH 7.6, 
r/2 = 0.65, 4.0 mg/ml. 

c) After extraction for 12 hr with 0.5 M KCl, 0.2 M Tris-HCl, 10 mM CaClg, pH 7.6, 
r/2 = 0.65, 7.6 mg/ml. 

d) After extraction for 24 hr with 0.5 M KCl, 0.2 M Tris-HCl, 10 mM CaCl2> pH 7.6, 
P/2 = 0.65, 8il mg/ml. 
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In an attempt to obtain further information on the nature of the 

KCl-Tris-EGTA and KCl-Tris-Ca^* extracts, the turbidity response of these 

extracts to added ATP was measured at low ionic strength. Suspensions 

of pure myosin do not give a turbidity response upon the addition of 

ATP, but the presence of a very small amount of actin will cause a 

measurable increase in turbidity upon ATP addition (Briskey et al. 

1967a). The results of this test (Figure 6) indicate that both the 

KCl-Tris-EGTA and the KCl-Tris-Ca*^ extracts contain actomyosin. How

ever the turbidity response to the KCl-Tris-Ca"*"^ extract is two to 

three times higher than the turbidity response of the KCl-Tris-EGTA 

extract. The amount of turbidity response is not linearly propor

tional to actomyosin content, and the interpretation of these results 

is further complicated by the ostensibly low Mg**-modified ATPase 

activity of the KCl-Tris-Ca** extracts. The Mg"'"'"-modified ATPase 

activity of actomyosin suspension is presumably coupled to the turbid

ity response, and therefore the turbidity response of the KCl-Tris-Ca** 

extract may be anomalously low. However it is obvious that the 

KCl-Tris-Ca+* extract must contain much more actomyosin than the KCl-

Tris-EGTA extract. 

Considered together, these results plainly show that the 

presence of EGTA in a KCl-Tris solution hinders the extraction of 
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Figure ô. Turbidity response for protein solubilized after 3 and 12 hr of extraction of minced 
whole rabbit muscle by either 0.5 M KGl, 0.2 M Tris-HCl, 10 mM EGTA or 0.5 M KCl, 
0.2 M Tris-HGl, 10 mM CaGl2. 

Conditions of turbidity assay: 0.5 mg protein/ml, 50 mM KCl, 20 mM Tris-acetate, 
1 mM MgCl2, 0.5 mM CaCl2» 1 mM ATP, pH 7.0, 26°C. Reaction initiated by the addition 
of ATP at 0 minute. 
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Table 15. Viscosimetric activity of protein extracted from minced rabbit 
muscle by KCl-Tris-HCl + 10 mM EGTA or KCl-Tris-HCl + 10 mM 
Ca++ at pH 7.6 

Time of Extracting solution 
extraction KCl- KCl-
(hr) Tris-HCl + 10 mM BGTA Tris-HCl + 10 mM Ca++ 

3 3.8 17.0 

6 16.3 28.9 

12 18.0 44.0 

24 28.5 87.2 

Table 16. ATPase activity of protein extracted from minced rabbit muscle 
by KCl-Tris-HCl + 10 mM EGTA or KCl-Tris-HCl + 10 mM Ca++ at 
pH 7.6 

Time of Extracting solution 
extraction KCl-Tris-HCl +10 mM BGTA "KCl-Tris-HCl +10 mM C2++ 

(hr) Ca++ Ng++/Ca++ Ca++ Mg+^/Ca++ 

(u mole/mg/min) (u mole/mg/min) 

3 .010 .267 .04 .012 .288 .04 

6 .010 .308 .03 .012 .304 .04 

1.2 .013 .273 

m
 
o
 .018 .293 .06 

24 .030 .267 .11 .018 .250 .07 

actomyosin from minced whole rabbit muscle, a result which confirms our 

original hypothesis. The presence of Ca++ in the KCl-Tris solution gives 

anomalous results, apparently causing solubilization of an abnormal ac

tomyosin which does not exhibit a high Mg'*"*'-modified ATPase activity. 
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Experiment IX 

Experiment VIII had confirmed our expectation that the presence of 

Ca** was a requirement for extraction of a significant amount of acto

myosin from muscle. However, addition of Ca** to the extracting solu

tion did not cause a marked increase in the rate of actomyosin solubiliza

tion as expected (although viscosity results suggested a small increase 

in this rate,(cf. Tables 1 and 15), but led instead to extraction of an 

anomalous actomyosin. Therefore, an experiment was done to test the ef

fects of Ca+^ and EGTA on actomyosin solubilization from myofibrils. 

Homogenized myofibrils were used so that comparisons could be made be

tween actomyosin extracted by an BGTA-containing solution and actomyosin 

extracted by a Ca"*"*"-containing solution. The extracting solutions used 

were again KCl-Tris-HCl at pH 7.6 containing either 10 mM EGTA or 10 mM Ca*^. 

The viscosimetric results are shown in Table 17. The presence of 

EGTA appeared to hinder actomyosin solubilization even from homogenized 

myofibrils (cf»- Tables 9 and 17) although some actomyosin was clearly ex

tracted even in the presence of EGTA. On the other hand, the presence 

of Ca*+ caused the almost immediate appearance of actomyosin in the extract 

(cf. Tables 9 and 17). The ATPase assays of these extracts are shown in 

Table IS. Again, the presence of Ca^* in the extracting solution appeared 

to decrease the Mg*^-modified ATPase activity of the extract, since the 

Mg"*"*"-modified ATPase activity of the KCl-Tris-Ca extract is considerably 

lower than the Mg"^"*"-modified ATPase activity of the KCl-Tris-EGTA extract. 
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However, the Ga'^'^-modified ATPase activity of the KCl-Tris-Ca"'"*' extract 

is slightly higher than the Ca"'"''-modified ATPase activity of the KCl-

Tris-EGTA extract. 

Table 17. Viscosimetric activity of protein extracted from homogenized 
myofibrils by KCl-Tris-HCl + 10 mM EGTA or KCl-Tris-HCl + 
10 mM Ca++ at pH 7.6 

Time of 
extraction 

(hr) 

Extracting solution Time of 
extraction 

(hr) 
KCl-

Tris-HCl + 10 
KCl-

mM EGTA Tris-HCl + 10 mM Ca++ 

3 33.8 93.8 

6 37.9 100.0 

12 43.9 100.0 

24 46.6 100.0 

Table 18. ATPase activity of protein extracted from homogenized myo
fibrils by KCl-Tris-HCl + 10 mM EGTA or KCl-Tris-HCl + 10 
mM Ca++ at pH 7.6 

Time of Extracting solution 
extraction KCl-Tris-HCl + 10 mM EGTA KCl-Tris-HCl + 10 mM Ca++ 

(hr) Mg++ Ca++ Mg++/Ca++ Mg++ Ca++ Mg++/Ca++ 

(u mole/mg/min) (u mole/mg/min) 

3 .197 .196 1.00 .094 .219 .43 

6 .145 .181 .80 .088 .221 .40 

12 .162 .206 .79 .094 .224 .42 

24 .109 .210 .52 .094 .217 .43 
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Experiment X 

The previous experiments in this study have all been based on the 

assumption that rupture of bonds between the I- and Z-filaments was the 

rate limiting step in actin solubilization. To test this assumption cnore 

directly, myofibrils were treated very briefly with trypsin, and then ex

tracted with phosphate-containing buffers. Very brief digestion of myo

fibrils with trypsin has been shown to almost completely remove the Z-

disk (Stromer et al., 1967). To extend this experiment, a second myo

fibril sample was treated with papain, a proteolytic enzyme whose effects 

on myofibrils are not completely understood. Both the trypsin-treated 

and papain-treated myofibrils were extracted with KCl-phosphate, pH 7.6, 

«72 = 0.65. 

Phase micrographs of control (untreated), trypsin-treated (4 min at 

2 5°C) and papain-treated (4 min at 2 5°C) are shown in Figure 7. The 

most obvious structural consequence of either trypsin or papain treatment 

of myofibrils was the almost total removal of the Z-line. This being so, 

it would be expected that these myofibrils would very quickly liberate 

actomyosin upon extraction. 

The viscosinetric results shown in Table 19 confirm this expectation. 

Actomyosin was very quickly extracted from both trypsin-treated and papain-

treated myofibrils, and such extraction appeared virtually complete as 

early as three hours after initial suspension. Furthermore, the viscosi-

metric activities observed in this experiment were the highest encountered 

in the entire study. The ATPase results are entirely in agreement with 

this conclusion (Table 20) since Mg'*"*'-modified ATPase activities of the 
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Figure 7. Phase micrographs of control (untreated), trypsin-treated and papain-treated myofibrils. 

a) Phase micrograph of myofibrils without any enzymatic digestion but treated at 2 5°C. 
4 min. 

b) Phase micrograph of myofibrils after trypsin digestion. 

c) Phase micrograph of myofibrils after papain treatment. 

Conditions of papain or trypsin digestion: 1 mg papain or trypsin/300 mg 
myofibrillar protein, 100 mM KCl, 100 niM Tris acetate, pH 7.6, 25°C, 4 min. 
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extracts were high already after only three hours of extraction. The ul-

tracentrifugal patterns of the extracts also showed that the 3-hour ex

tracts consisted primarily of actomyosin with only a very small amount of 

free myosin (Figure 8, a and b). The sedimentation patterns of these ex

tracts did not change significantly, even when the extraction was prolonged 

for 24 hours (Figure 8, c and d). 

Table 19. Viscosimetric activity of protein extracted from rabbit myo
fibrils treated with trypsin and papain by KCl-phosphate at 
pH 7.6 

Time of Extracting solution 
extraction KCl-phosphate KCl-phosphate 

(hr) (trypsin-treated) (papain-treated) 

3 140.4 129.8 

6 133.9 131.8 

12 117.9 133.4 

24 120.4 134.2 

Table 20. ATPase activity of protein extracted from rabbit myofibrils 
treated with trypsin and papain, by KCl-phosphate at pH 7.6 

Time of KCl-phosphate 
extraction Trypsin-treated Papain-treated 

(hr) Ca++ Ng++/Ca++ Mg++ Ca++ Mg++/Ca++ 

(u mole/mg/min; (u mole/mg/min) 

3 .051 .223 .23 .042 .235 .18 

6 .056 .221 .25 .039 .223 .18 

12 .067 .204 .33 .045 .215 .21 

24 .095 .251 .38 .060 .242 .25 
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Figure 8. Sedimentation patterns o£ protein extracted Erom trypsin-treated or papain-treated 
myofibrils by KCl-phosphate. 

a) After 3 hr of extraction with 0.1 M KCl, 0.2 M K-phosphate, pH 7.6, V/1 - 0.65, 
myofibrils treated for 4 min with trypsin first, prior to extraction, 5.9 mg/ral. 

b) After 3 hr of extraction with 0.1 M KCl, 0.2 M K-phosphate, pU 7.6, V/2 - 0.65, 
myofibrils treated for 4 min with papain first, prior to extraction, 6.1 mg/ml. 

c) After 2U hr of extraction with 0.1 M KCl, 0.2 M K-phosphate, pH 7.6, P/2 = 0.65, 
myofibrils treated for U min with papain first,prior to extraction, 5.1 mg/ral. 

d) After 24 hr of extraction with 0.1 M KCl, 0.2 M K-phosphate, pH 7.6, r/2 = 0.65, 
myofibrils treated for 4 min with trypsin first,prior to extraction, 4.68 mg/ml. 
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The turbidity response of the KCl-phosphate extracts of trypsin 

and papain-treated myofibrils is shown in Figure 9. Both extracts ex

hibited a sizeable turbidity response after only 3 hours of extraction, 

again indicating that the 3-hour extracts consisted primarily of acto-

myosin. It was noticed that the extracts from trypsin-treated myo

fibrils exhibited a lower and oftentime slower rate of turbidity de

velopment than the extracts from papain-treated myofibrils. This is 

probably a reflection of the weakening effect which trypsin has on the 

actin-myosin interaction (Goll et al.).^ 

Goll, Barrel E., R-M. Robson, and D. W. Henderson, Iowa State Uni
versity, Ames, Iowa. An effect of trypsin on the actin-myosin inter
action. Private communication. 1969. 
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Figure 9. Turbidity response o£ protein solubilized by 3 and 12 hr extraction of trypsin or 
papain-treated myofibrils with -0.1 M KCl, 0.2 M K-phosphate, pH 7.6, r/2 = 0.65. 

Conditions of turbidity assay: 0.5 ing myofibri1lar/protein/ml, 50 mM KCl, 
20 mM Tris-acetate, 1 mM MgCl2> 0.5 mM CaCl2, 1 mM ATP, pH 7.0, 26°C. Reaction 
initiated by the addition of ATP at 0 min. 
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DISCUSSION 

The results of the ten experiments described in this investigation 

clearly demonstrate that high ionic strength ( P/2 = 0.65) phosphate-

containing buffers, at either pH 7.6 or 6.5, extract only myosin and not 

actomyosin from minced rabbit muscle or rabbit myofibrils. Even though 

the extraction times were extended to 24 hr, almost no actomyosin ex

traction occurred in phosphate-containing buffers. The use of KCl-Tris-

HCl buffer at identical pH values and ionic strengths and under identical 

extraction conditions on the same muscle preparations resulted in acto

myosin extraction, with most of the actomyosin solubilization occurring 

between 12 and 24 hour of extraction. Therefore, the lack of actomyosin 

extraction is clearly a property of the presence of phosphate, and is not 

due to the particular muscle residue or to an inappropriate choice of pH, 

ionic strength, or other extraction conditions. These results confirm and 

extend the findings of Mihalyi and Rowe (1966) who also found that the 

presence of phosphate prevented actomyosin solubilization from minced 

whole rabbit muscle. 

This finding is quite surprising in view of the presently accepted 

concepts of actomyosin extraction (Banga and Szent Gyorgyi, 1941; Haga 

et al., 1966b) which ascribe a central role in prevention of actomyosin 

extraction to the presence of ATP. Thus, it is currently thought that 

when minced muscle is suspended in a high ionic-strength salt solution, 

myosin is first extracted into solution. After the intrinsic ATP present 

in the muscle at death has fallen to a level so low that it cannot ef

fectively dissociate the actin-myosin complex, the affinity between 
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myosin in solution and actin in the thin filaments breaks the bond be

tween the Z-disk and the thin filament, releasing actin into solution to 

form actomyosin. In terms of this concept, actomyosin extraction would 

start immediately upon suspension of myofibrils, which do not contain 

any ATP, in the KCl-phosphate or KCl-Tris-solution. Mihalyi and Rowe 

(1966), found that the presence of phosphate in the extracting buffer did 

not affect the rate of breakdown of the intrinsic ATP in muscle. These 

investigators suggested that the effect of phosphate (or of pyrophosphate 

or ATP) was to stabilize bonds between the thin filaments and the Z-line, 

thereby preventing the release of actin from the residues into solution 

to form actomyosin. However no evidence was given in Mihalyi and Rowe's 

(1966) paper to support this hypothesis. Thus, it is possible that 

phosphate, pyrophosphate, or ATP may be affecting several properties of 

a muscle suspension in a high ionic-strength solution, and that any one 

of these effects may prevent actin solubilization. 

The results of several experiments in the present study plainly 

shewed that mechanical shear forces, either as a result of homogeniza-

tion during myofibril preparation or due to stirring during extraction 

of minced whole muscle, caused actomyosin extraction even in the presence 

of phosphate buffer. In fact, under conditions of such mechanical shear. 

Tris- and phosphate-containing buffers appeared equal in their ability to 

extract actomyosin. Hcwever, the demonstration that mechanical shear in

creases the rate of actin solubilization in phosphate-containing buffers 

does not prove that such shear forces are rupturing or breaking bonds 

between the I- and the Z-filaments. Such shear forces could be fracturing 
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the actin filaments themselves, causing the release of F-actin fragments 

into solution. 

The experiments involving extraction of trypsin or papain-treated 

myofibrils with phosphate-containing buffers do provide evidence that the 

rate of actin solubilization depends on the rate of rupture of the I-Z 

bonds. As judged by examination in the phase microscope, the only visible 

effect of 4-minute treatment of myofibrils with papain or trypsin was a 

removal of the Z-line. That this is the only structural effect of trypsin 

has been further documented by electron microscopic examination (Stromer 

et al., 1967). When trypsin- or papain-treated myofibrils were suspended 

in a high ionic-strength phosphate-containing solution, actomyosin solu

bilization commenced at once and was virtually complete within 3 hours. 

Under identical conditions, only a very small amount of actomyosin was 

solubilized until after 12 hours of extraction from homogenized myofibrils 

that had not been treated with trypsin or papain. In fact, viscometric 

activities of the 3-hour extract from the trypsin- or papain-treated myo

fibrils were higher than for the 24-hour extracts from untreated myofi

brils. This indicates that not only a very rapid, but also a very com

plete solubilization of actin occurs after Z-lines have been removed by 

proteolytic enzymes. 

Thus, the results of this study are in agreement with the findings 

of Eaga et al. (1966b) who presented electron microscopic evidence that 

the extraction of actomyosin from minced whole rabbit muscle was preceded 

by the appearance of a break between the Z-line and the I-band. Further

more, Maruyama (1966) found that the average particle length in actomyosin 
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solutions was 1 u, the same as the length of their filaments in vivo. 

This suggests that thin or actin filaments are solubilized intact rather 

than as small pieces that have been broken off the end of thin filament 

in succession until it has been solubilized. Together, the evidence indi

cates that F-actin is solubilized as intact filaments, and that the rate-

limiting step in actin solubilization is the rate of rupture of the I-Z 

bonds. 

Therefore the results of this study clearly show that unless the 

muscle is first treated to weaken or rupture the 1-Z-bonds, phosphate-

containing buffers will not solubilize actin from either minced whole 

muscle or myofibrils. However, it was not clear how phosphate (or pre

sumably pyrophosphate and ATP as well) was acting to cause this effect. 

Haga et al. (1966b) have reported that the presence of Ca"*"^ appears 

to enhance the solubilization of "natural" F-actin filaments from fibrous 

muscle residues which have had all their myosin extracted. Since phos

phate, pyrophosphate, and ATP are all strong Ca"*"*" chelators, it seemed 

possible that Ca"*"*" weakens the I-Z bonds, and that the effect of phos

phate (or pyrophosphate or ATP) was to chelate Ca++, thereby preventing 

its effect at the I-Z junction. This possibility has been strongly sup

ported in this study by experiments showing that the addition of low 

amounts of EGTA, a strong Ca"*"*" chelator, to a high ionic-strength KCl-

Tris-HCl buffer prevented actomyosin extraction by Tris solution from 

minced whole rabbit muscle. Moreover, EGTA appeared to significantly 

slow the rate of actomyosin extraction even from homogenized myofibrils. 
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On the other hand, the addition of Ca"*"*" to the high ionic-strength KCl-

Tris-HCl extracting solution appeared to enhance the rate of actomyosin 

solubilization. The effect of Ca** was somewhat difficult to ascertain 

exactly, since the presence of 10 miM Ca** appeared to cause solubiliza

tion of an anomalous actomyosin which exhibited three to four peaks In 

the analytical ultracentrifuge and had an abnormally low Mg^^-activaced 

ATPase activity. The viscosity measurements, however, clearly indicated 

that the presence of Ca** increased the rate of appearance of viscosi-

metric activity in extracts of either minced whole muscle or homogenized 

myof ibrils. 

The mechanism of calcium's effect on the I-Z bonds is entirely 

unknown. It has recently been shown^ that incubation of muscle fiber 

strips in physiological saline solutions containing 1 mM Ca^^ leads to 

disappearance of Z-lines in myofibrils prepared from these strips. 

Substitution of 5 mM EGTA for Ca^* results in stabilization of Z-line 

structure in the fibers. Robson has shown that Ca^^ causes some pre

cipitation of G-actinin, a protein supposedly located in the Z-line. 

Whether this effect of Ca** on G-actinin presages an effect of Ca** on 

the interaction between G-actinin in the Z-line and F-actin in the thin 

filaments must remain speculative for the present. 

The findings presented in this study have fundamental implications 

for studies of post-mortem changes in myofibrillar protein solubility. 

^Busch, W. A., Iowa State University, Ames, Iowa. Effect of Ca** 
on rabbit muscle fiber. Private communication, 1969. 

2 
Robson, R. M., Iowa State University, Ames, Iowa. Effect of Ca** 

on G-actinin. Private communication. 1969. 
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Many of these studies have ostensibly not examined the nature of their 

protein extracts in any detail, but rather have assumed that high ionic 

strength salt solutions will always extract actomyosin. Even for many 

of those studies where the solubilized protein has been characterized, 

this characterization consisted only of measurement of the amount of pro

tein precipitated at various ionic strength. Thus, the protein precipi

tated at ionic strengths between 0.2 and 0.3 is termed "actomyosin", and 

the additional protein precipitated by further dilution to ionic strength 

of 0.05 to 0.1 is called "myosin". Yet, it is known that significant 

amounts of aggregated myosin are precipitated at an ionic strength of 

0.2 to 0.25. Many studies on post-mortem changes in myofibrillar protein 

solubility have been interpreted in terms of an interaction between actin 

and myosin filaments soon after death. This interaction presumably leads 

to a decrease in protein solubility. Post-mortem storage times of longer 

than 2U hours are accompanied by an increase in myofibrillar protein 

solubility, which has been interpreted as a dissociation of the actin-

myosin complex. It has recently been shown (Henderson, 1968) that post

mortem storage causes progressive loss of Z-line structure. Results of 

the present study show that loss of the Z-line or rupture of I-Z bonds 

causes a considerable enhancement in rate of actomyosin formation. There

fore it now appears that post-mortem Z-line degradation accounts for the 

increase in myofibrillar protein solubility with post-mortem storage 

times of 24 hour or greater, and that this increased solubility should not 

be interpreted in terms of an actin-myosin dissociation. In fact, it is 

not clear why the actin-myosin interaction should have any great effect 
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on myofibrillar protein solubility at all, and the earlier interpretation 

concerning interaction and dissociation of the thick and thin filaments 

should be completely re-examined. 

The results of this study also indicate that turbidity is the most 

sensitive assay for the presence of actin in myofibrillar protein ex

tracts. In fact, it appears possible to obtain a sizeable turbidity 

response to ATP addition even in extracts whose viscosity did not change 

upon the addition of ATP, that did not exhibit any detectable Mg^^-

modified ATPase activity characteristic of actomyosin, and that did not 

possess any visible actomyosin boundary in the analytical ultracentrifuge. 

The relation of the turbidity assay to the contraction process is not clear, 

and so the significance of the apparent sensitivity of the turbidity as

say to the presence of actin is also unknown. Therefore, turbidity was 

not used extensively for following the extraction of actomyosin in this 

study. 
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SUMMARY 

This investigation has studied the extraction of myofibrillar 

protein by different salt solutions, with particular emphasis on the 

relative rates of actin and myosin solubilization from whole minced 

muscle or myofibrils. Rabbit muscle was used throughout. The ionic 

strength of all extracting solutions was adjusted to exactly 0.65 by vary

ing the KCl concentration. The presence of myosin and actomyosin in the 

extracts was determined by using three independent methods: 1) analytical 

ultracentrifugation, 2) ratio of Mg^^-to Ca*^-modified ATPase activity, 

and 3) the effect of 5 mM Mg'*"''-ATP on viscosity of the extracts in 0.5 M 

KCl. The results of the third test were expressed in terms of viscoTi-

metric activity. 

The findings in this study showed that, in the presence of phosphate 

buffer at either pH 6.5 or 7.6, actomyosin is not extracted from minced 

whole muscle or myofibrils, unless extraction is accompanied by some 

treatment severe enough to loosen the actin filament from the 2-line. 

This treatment may consist of stirring the muscle suspension during ex

traction or of homogenization of the myofibrils during their preparation. 

If the extraction is done under identical conditions of pH, ionic strength, 

and temperature, but Tris-HCl buffer is substituted for the phosphate 

buffer, actomyosin is extracted even in the absence of stirring or homo

genization. Thus, the prevention of actomyosin extraction is caused by 

the presence of the phosphate anion. This finding raises considerable 

doubt concerning Banga and Szent Gyorgyi (1941) theory that actomyosin 
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extraction commences as soon as the intrinsic ATP in muscle is depleted. 

In the presence of Tris-HCl buffer, actomyosin extraction begins after 

10-12 hours of extraction of minced whole muscle and after 3-6 hours of 

extraction of unhomogenized myofibrils. 

It was observed that protein extracted from myofibrils by either 

Tris-containing or phosphate-containing buffers appeared very hetero

geneous in the analytical ultracentrifuge. This protein also exhibited 

an abnormally low C&**-modified ATPase activity and possessed some 

viscosimetric activity, even though it had no Mg^^-modified ATPase ac

tivity and did not exhibit an actomyosin boundary in the analytical ultra-

centrifuge. It was concluded that high ionic-strength extraction of 

myofibrils results in the solubilization of some heterogeneous polymers 

of denatured myosin and actin. 

Evidence was presented which suggests that rupture of the bonds be

tween the I- and Z-filaments is the rate-limiting step in actomyosin 

solubilization. When examined in the phase microscope, the only effect 

of a 4-min trypsin or papain treatment of myofibrils was removal of the 

Z-line. Extraction of these treated myofibrils with phosphate-containing 

buffers resulted in almost complete extraction of actomyosin within three 

hours. This is much faster than actomyosin extraction from myofibrils 

even in the presence of Tris-HCl buffer. 

This study also showed that the presence of 10 mM BGTA, a strong 

Ca"^"*"chelator, in high ionic strength, Tris-containing buffers prevented 

actomyosin extraction in a manner similar to that observed for phosphate-
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containing buffers. Therefore, it appears that the presence of Ca^^ weak

ens or ruptures the 1-2 bonds and thereby facilitates actin solubiliza

tion. Since phosphate is a strong Ca^^ chelator, this would explain the 

lack of actomyosin extraction in phosphate-containing buffers. Some 

direct evidence supporting this conclusion was obtained when it was shown 

that addition of 10 mM Ca"*"*" to high ionic-strength Tris-containing buffers 

increased the rate of actomyosin extraction from either minced whole 

muscle or myofibrils. However, actomyosin extracted in the presence of 

Ca** appears to have an abnormally low Mg"'"''-modified ATPase activity and 

also exhibited an unusual appearance in the analytical ultracentrifuge. 

It is possible that even very low (10 ̂  to 10 ̂ M) amounts of Ca^^ are 

sufficient to weaken or rupture the I-Z bonds and that higher concentra

tions of Ca+* cause some fragmentation of the actin filament itself. 

This fragmentation may cause formation of several classes of actomyosin 

based on length of actin filaments associated with myosin and may thus ex

plain the appearance of three to four boundaries in the sedimentation 

patterns of actomyosin extracted in the presence of 10 mM Ca^*. 
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CONCLUSIONS 

1. KCl-phosphate solutions at pH 7.6 and an ionic strength of 0.65 

extract only myosin and not actomyosin from either minced whole rabbit 

muscle or rabbit myofibrils, even after extraction times up to 24 hours. 

Extraction of the same muscle preparations with KCl-Tris-HCl solutions 

of identical pH and ionic strength causes solubilization of actomyosin, 

with this solubilization beginning after 10-12 hours of extraction. 

Therefore, the presence of phosphate in high ionic-strength solutions at 

pH 7.6 suppresses the extraction of actomyosin from muscle residues. 

This suppression is not related to ATP content of the residue. 

2. Changing pH of the KCl-phosphate extracting solution from 7.6 

to 6.5 does not cause any difference in ability of phosphate-containing 

solutions to extract actomyosin from minced whole rabbit muscle or rab

bit myofibrils. 

3. Actomyosin may be solubilized from either rabbit myofibrils or 

minced whole muscle by high ionic-strength phosphate solutions at pH 7.6, 

if the myofibrils are homogenized during their preparation, or if the whole 

muscle mince is continually stirred during extraction. Evidently, such 

mechanical shear forces cause rupture or weakening of the bonds holding 

actin into the fibrous myosin-extracted residue. In the presence of 

high ionic-strength phosphate-containing solutions, actin solubilization 

from mechanically treated residues commences within 3 hours of extraction 

of myofibrils or within 12 hours of extraction of minced whole muscle. 
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4. Extraction of myofibrils by high ionic-strength salt solutions 

result in a protein solution that appears very heterogeneous in the 

analytical ultracentrifuge, and that possesses a very low Ca^^-modified 

ATPase activity. This occurs both in the presence and absence of actomyo-

sin extraction. These protein solutions also exhibit a small viscosity 

decrease upon the addition of ATP even in the absence of any actomyosin. 

Direct extraction of myofibrils apparently causes solution of polymers 

of denatured myosin and actin. 

5. The rate-limiting step in actin'solubilization' from muscle by 

high ionic-strength salt solutions is the rate of rupture of bonds hold

ing thin or actin filaments to the Z-line. Removal of the Z-line by 

brief enzymic digestion with either papain or trypsin results in immedi

ate actomyosin solubilization, when the enzyme-treated myofibrils are 

subsequently suspended in high ionic-strength salt solutions. Actomyosin 

solubilization from such myofibrils is almost complete within 3 hours of 

extraction and occurs even in the presence of phosphate. Therefore, phos

phate must act to stabilize or strengthen the bonds between I- and Z-

filaments, thereby preventing actin solubilization. 

6. The presence of EGTA, a strong Ca"*"*" chelator, in high ionic-

strength KCl-Tris solutions prevents actomyosin extraction from minced 

whole muscle and suppresses the rate of actin solubilization from even 

homogenized myofibrils. Therefore, the absence of Ca** must strengthen 

or stabilize the I-Z bonds, and the inhibition of actin solubilization 

by high ionic-strength phosphate-containing solutions is probably due to 
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the Ca"*"*"-chelating abilities of phosphate. Addition of Ca^* to high 

ionic-strength KCl-Tris solutions increases the rate of actin solubiliza

tion by such solutions, but the actomyosin formed has an anomalously low 

Mg**-modified ATPase activity, and an unusual "multi-peaked" appearance 

in the analytical ultracentrifuge. 

7. Turbidity response to ATP addition is more sensitive test for 

the presence of actin in myosin-containing solutions than analytical 

ultracentrifugation, the appearance of a Mg"*"*"-modified ATPase activity, 

or the ability of ATP to cause a viscosity decrease. 
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